Qdatasheet_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

L6564 View Datasheet(PDF) - STMicroelectronics

Part Name
Description
MFG CO.
L6564
ST-Microelectronics
STMicroelectronics ST-Microelectronics
'L6564' PDF : 34 Pages View PDF
L6564
Application information
Essentially, the circuit artificially increases the ON-time of the power switch with a positive
offset added to the output of the multiplier in the proximity of the line voltage zero-crossings.
This offset is reduced as the instantaneous line voltage increases, so that it becomes
negligible as the line voltage moves toward the top of the sinusoid. Furthermore the offset is
modulated by the voltage on the VFF pin (see “Voltage Feedforward” section) so as to have
little offset at low line, where energy transfer at zero crossings is typically quite good, and a
larger offset at high line where the energy transfer gets worse.
The effect of the circuit is shown in Figure 38, where the key waveforms of a standard TM
PFC controller are compared to those of this chip.
To take maximum benefit from the THD optimizer circuit, the high-frequency filter capacitor
after the bridge rectifier should be minimized, compatibly with EMI filtering needs. A large
capacitance, in fact, introduces a conduction dead-angle of the AC input current in itself -
even with an ideal energy transfer by the PFC pre-regulator - thus reducing the effectiveness
of the optimizer circuit.
6.5
Inductor saturation detection
Boost inductor's hard saturation may be a fatal event for a PFC pre-regulator: the current up-
slope becomes so large (50-100 times steeper, see Figure 39) that during the current sense
propagation delay the current may reach abnormally high values. The voltage drop caused
by this abnormal current on the sense resistor reduces the gate-to-source voltage, so that
the MOSFET may work in the active region and dissipate a huge amount of power, which
leads to a catastrophic failure after few switching cycles.
However, in some applications such as ac-dc adapters, where the PFC pre-regulator is
turned off at light load for energy saving reasons, even a well-designed boost inductor may
occasionally slightly saturate when the PFC stage is restarted because of a larger load
demand. This happens when the restart occurs at an unfavorable line voltage phase, i.e.
when the output voltage is significantly below the rectified peak voltage. As a result, in the
boost inductor the inrush current coming from the bridge rectifier adds up to the switched
current and, furthermore, there is little or no voltage available for demagnetization.
To cope with a saturated inductor, the L6564 is provided with a second comparator on the
current sense pin (CS, pin 4) that stops the IC if the voltage, normally limited within 1.1 V,
exceeds 1.7 V. After that, the IC will be attempted to restart by the internal starter circuitry;
the starter repetition time is twice the nominal value to guarantee lower stress for the
inductor and boost diode. Hence, the system safety will be considerably increased.
Figure 39. Effect of boost inductor saturation on the MOSFET current and detection method
Doc ID 16202 Rev 1
25/34
Share Link: GO URL

All Rights Reserved © qdatasheet.com  [ Privacy Policy ] [ Contact Us ]