Qdatasheet_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

L6566B View Datasheet(PDF) - STMicroelectronics

Part Name
Description
MFG CO.
L6566B
ST-Microelectronics
STMicroelectronics ST-Microelectronics
'L6566B' PDF : 51 Pages View PDF
L6566B
Application information
5.2
Zero current detection and triggering block; oscillator block
The zero current detection (ZCD) and triggering blocks switch on the external MOSFET if a
negative-going edge falling below 50 mV is applied to the input (pin 11, ZCD). To do so the
triggering block must be previously armed by a positive-going edge exceeding 100 mV.
This feature is typically used to detect transformer demagnetization for QR operation, where
the signal for the ZCD input is obtained from the transformer’s auxiliary winding used also to
supply the L6566B. The triggering block is blanked for TBLANK = 2.5 µs after MOSFET’s
turn-off to prevent any negative-going edge that follows leakage inductance
demagnetization from triggering the ZCD circuit erroneously.
The voltage at the pin is both top and bottom limited by a double clamp, as illustrated in the
internal diagram of the ZCD block of Figure 8 on page 20. The upper clamp is typically
located at 5.7 V, while the lower clamp is located at -0.4 V. The interface between the pin
and the auxiliary winding will be a resistor divider. Its resistance ratio will be properly chosen
(see Section 5.11: OVP block on page 35) and the individual resistance values (RZ1, RZ2)
will be such that the current sourced and sunk by the pin be within the rated capability of the
internal clamps (± 3 mA).
At converter power-up, when no signal is coming from the ZCD pin, the oscillator starts up
the system. The oscillator is programmed externally by means of a resistor (RT) connected
from pin OSC (13) to ground. With good approximation the oscillation frequency fosc will be:
Equation 2
fosc
2 10 3
RT
(with fosc in kHz and RT in k). As the device is turned on, the oscillator starts immediately;
at the end of the first oscillator cycle, being zero the voltage on the ZCD pin, the MOSFET
will be turned on, thus starting the first switching cycle right at the beginning of the second
oscillator cycle. At any switching cycle, the MOSFET is turned off as the voltage on the
current sense pin (CS, 7) hits an internal reference set by the line feedforward block, and the
transformer starts demagnetization. If this completes (hence a negative-going edge appears
on the ZCD pin) after a time exceeding one oscillation period Tosc = 1/fosc from the previous
turn-on, the MOSFET will be turned on again - with some delay to ensure minimum voltage
at turn-on – and the oscillator ramp will be reset. If, instead, the negative-going edge
appears before Tosc has elapsed, it will be ignored and only the first negative-going edge
after Tosc will turn-on the MOSFET and synchronize the oscillator. In this way one or more
drain ringing cycles will be skipped (“valley-skipping mode”, Figure 9) and the switching
frequency will be prevented from exceeding fosc.
21/51
Share Link: GO URL

All Rights Reserved © qdatasheet.com  [ Privacy Policy ] [ Contact Us ]