Increasing the line level using active impedance matching
TS616
First let’s consider the unloaded system. We can assume that the currents through R1, R2
and R3 are respectively:
2-R---V--1--i,
(---V----i---–-----V----o----°---)-
R2
a n d (---V----i--R-+---3--V----o----)
As Vo° equals Vo without load, the gain in this case becomes:
1 + 2----R-----2-- + R-----2--
G = V-----o----(--n----o---l--o----a---d----)- = ------------R-----1------------R----3--
Vi
1 – R-----2--
R3
The gain, for the loaded system is given by Equation 6:
Equation 6
1 + 2----R-----2-- + R-----2--
GL
=
V-----o----(--w-----i-t--h----l--o---a----d----)
Vi
=
12-- ----------1--R---–--1--R----------2-------R----3--
R3
The system shown in Figure 70 is an ideal generator with a synthesized impedance acting
as the internal impedance of the system. From this, the output voltage becomes:
Equation 7
Vo = (ViG) – (Ro ⋅ Iout)
where Ro is the synthesized impedance and Iout the output current.
On the other hand Vo can be expressed as:
Equation 8
Vo
=
Vi⎝⎛
1
+
2----R-----2--
R1
+
RR-----23--⎠⎞
-----------------------------------------------
–
R-----s----1---I--o----u----t
1 – R-----2--
1 – R-----2--
R3
R3
By identification of both Equation 7 and Equation 8, the synthesized impedance is, with
Rs1 = Rs2 = Rs:
Equation 9
Ro = -1----–-R----R-s---------2---
R3
32/37