Qdatasheet_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

EVAL-AD7687SDZ View Datasheet(PDF) - Analog Devices

Part Name
Description
MFG CO.
'EVAL-AD7687SDZ' PDF : 28 Pages View PDF
Data Sheet
AD7687
IN+
REF
GND
MSB
SWITCHES CONTROL
LSB SW+
32,768C 16,384C
4C
2C
C
C
32,768C 16,384C
4C
2C
C
C
COMP
CONTROL
LOGIC
BUSY
OUTPUT CODE
MSB
LSB SW–
CNV
IN–
Figure 25. ADC Simplified Schematic
CIRCUIT INFORMATION
The AD7687 is a fast, low power, single-supply, precise 16-bit
ADC using a successive approximation architecture.
The AD7687 is capable of converting 250,000 samples per
second (250 kSPS) and powers down between conversions.
When operating at 100 SPS, for example, it typically consumes
1.35 μW, which is ideal for battery-powered applications.
The AD7687 provides the user with an on-chip track-and-hold
and does not exhibit any pipeline delay or latency, making it
ideal for multiple multiplexed channel applications.
The AD7687 is specified from 2.3 V to 5.5 V and can be
interfaced to any of the 1.8 V to 5 V digital logic family. It is
housed in a 10-lead MSOP or a tiny 10-lead QFN (LFCSP) that
combines space savings and allows flexible configurations.
It is pin-for-pin-compatible with the AD7685, AD7686, and
AD7688.
CONVERTER OPERATION
The AD7687 is a successive approximation ADC based on a
charge redistribution DAC. Figure 25 shows the simplified
schematic of the ADC. The capacitive DAC consists of two
identical arrays of 16 binary weighted capacitors, which are
connected to the two comparator inputs.
During the acquisition phase, terminals of the array tied to the
comparator’s input are connected to GND via SW+ and SW−.
All independent switches are connected to the analog inputs.
Thus, the capacitor arrays are used as sampling capacitors and
acquire the analog signal on the IN+ and IN− inputs. When the
acquisition phase is complete and the CNV input goes high, a
conversion phase is initiated. When the conversion phase
begins, SW+ and SW− are opened first. The two capacitor
arrays are then disconnected from the inputs and connected to
the GND input. Therefore, the differential voltage between the
inputs IN+ and IN− captured at the end of the acquisition phase
is applied to the comparator inputs, causing the comparator to
become unbalanced. By switching each element of the capacitor
array between GND and REF, the comparator input varies by
binary weighted voltage steps (VREF/2, VREF/4 . . . VREF/65536).
The control logic toggles these switches, starting with the MSB,
in order to bring the comparator back into a balanced
condition. After the completion of this process, the part returns
to the acquisition phase and the control logic generates the
ADC output code and a BUSY signal indicator.
Because the AD7687 has an on-board conversion clock, the
serial clock, SCK, is not required for the conversion process.
Rev. B | Page 13 of 28
Share Link: GO URL

All Rights Reserved © qdatasheet.com  [ Privacy Policy ] [ Contact Us ]