Qdatasheet_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

LTC1709 View Datasheet(PDF) - Linear Technology

Part Name
Description
MFG CO.
'LTC1709' PDF : 28 Pages View PDF
LTC1709
APPLICATIO S I FOR ATIO
but it is very dependent on inductance selected. As induc-
tance increases, core losses go down. Unfortunately,
increased inductance requires more turns of wire and
therefore copper losses will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive than
ferrite. A reasonable compromise from the same manu-
facturer is Kool Mµ. Toroids are very space efficient,
especially when you can use several layers of wire. Be-
cause they lack a bobbin, mounting is more difficult.
However, designs for surface mount are available which
do not increase the height significantly.
Power MOSFET, D1 and D2 Selection
Two external power MOSFETs must be selected for each
output stage for the LTC1709: One N-channel MOSFET for
the top (main) switch, and one N-channel MOSFET for the
bottom (synchronous) switch.
The peak-to-peak drive levels are set by the INTVCC volt-
age. This voltage is typically 5V during start-up (see
EXTVCC Pin Connection). Consequently, logic-level thresh-
old MOSFETs must be used in most applications. The only
exception is if low input voltage is expected (VIN < 5V);
then, sublogic-level threshold MOSFETs (VGS(TH) < 1V)
should be used. Pay close attention to the BVDSS specifi-
cation for the MOSFETs as well; most of the logic-level
MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the “ON”
resistance RDS(ON), reverse transfer capacitance CRSS,
input voltage, and maximum output current. When the
LTC1709 is operating in continuous mode the duty factors
for the top and bottom MOSFETs of each output stage are
given by:
Main Switch Duty Cycle = VOUT
VIN
Synchronous
Switch
Duty
Cycle
=

VIN
– VOUT
VIN

The MOSFET power dissipations at maximum output
current are given by:
( ) PMAIN
=
VOUT
VIN
IMAX 2
 2 
1+ δ
RDS(ON)
+
( ) ( )( ) k
VIN
2IMAX
 2 
CRSS
f
( ) PSYNC
=
VIN
– VOUT
VIN
IMAX 2
 2 
1+ δ
RDS(ON)
where δ is the temperature dependency of RDS(ON) and k
is a constant inversely related to the gate drive current.
Both MOSFETs have I2R losses but the topside N-channel
equation includes an additional term for transition losses,
which peak at the highest input voltage. For VIN < 20V the
high current efficiency generally improves with larger
MOSFETs, while for VIN > 20V the transition losses rapidly
increase to the point that the use of a higher RDS(ON) device
with lower CRSS actual provides higher efficiency. The
synchronous MOSFET losses are greatest at high input
voltage when the top switch duty factor is low or during a
short-circuit when the synchronous switch is on close to
100% of the period.
The term (1 + δ) is generally given for a MOSFET in the
form of a normalized RDS(ON) vs. Temperature curve, but
δ = 0.005/°C can be used as an approximation for low
voltage MOSFETs. CRSS is usually specified in the MOS-
FET characteristics. The constant k = 1.7 can be used to
estimate the contributions of the two terms in the main
switch dissipation equation.
The Schottky diodes, D1 and D2 shown in Figure 1 conduct
during the dead-time between the conduction of the two
large power MOSFETs. This helps prevent the body diode
13
Share Link: GO URL

All Rights Reserved © qdatasheet.com  [ Privacy Policy ] [ Contact Us ]