Qdatasheet_Logo
Integrated circuits, Transistor, Semiconductors Search and Datasheet PDF Download Site

LTC1709 View Datasheet(PDF) - Linear Technology

Part Name
Description
MFG CO.
'LTC1709' PDF : 28 Pages View PDF
LTC1709
APPLICATIO S I FOR ATIO
applications may approach this minimum on-time limit
and care should be taken to ensure that:
( ) ( ) tON MIN
< VOUT
VIN f
If the duty cycle falls below what can be accommodated by
the minimum on-time, the LTC1709 will begin to skip
cycles resulting in variable frequency operation. The out-
put voltage will continue to be regulated, but the ripple
current and ripple voltage will increase.
The minimum on-time for the LTC1709 is generally less
than 200ns. However, as the peak sense voltage de-
creases, the minimum on-time gradually increases. This is
of particular concern in forced continuous applications
with low ripple current at light loads. If the duty cycle drops
below the minimum on-time limit in this situation, a
significant amount of cycle skipping can occur with corre-
spondingly larger ripple current and voltage ripple.
If an application can operate close to the minimum on-
time limit, an inductor must be chosen that has a low
enough inductance to provide sufficient ripple amplitude
to meet the minimum on-time requirement. As a general
rule, keep the inductor ripple current of each phase equal
to or greater than 15% of IOUT(MAX) at VIN(MAX).
Voltage Positioning
Voltage positioning can be used to minimize peak-to-peak
output voltage excursion under worst-case transient load-
ing conditions. The open-loop DC gain of the control loop
is reduced depending upon the maximum load step speci-
fication. Voltage positioning can easily be added to the
LTC1709 by loading the ITH pin with a resistive divider
having a Thevenin equivalent voltage source equal to the
midpoint operating voltage of the error amplifier, or 1.2V
(see Figure 8).
The resistive load reduces the DC loop gain while main-
taining the linear control range of the error amplifier. The
worst-case peak-to-peak output voltage deviation due to
transient loading can theoretically be reduced to half or
alternatively the amount of output capacitance can be
reduced for a particular application. A complete explana-
INTVCC
RT2
RT1
ITH
RC
LTC1709
CC
1709 F08
Figure 8. Active Voltage Positioning Applied to the LTC1709
tion is included in Design Solutions 10 or the LTC1736
data sheet. (See www.linear-tech.com)
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can be
expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percentage
of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC1709 circuits: 1) I2R losses, 2) Topside
MOSFET transition losses, 3) INTVCC regulator current
and 4) LTC1709 VIN current (including loading on the
differential amplifier output).
1) I2R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resistor,
and input and output capacitor ESR. In continuous mode
the average output current flows through L and RSENSE,
but is “chopped” between the topside MOSFET and the
synchronous MOSFET. If the two MOSFETs have approxi-
mately the same RDS(ON), then the resistance of one
MOSFET can simply be summed with the resistances of L,
RSENSE and ESR to obtain I2R losses. For example, if each
RDS(ON)=10m, RL=10m, and RSENSE=5m, then the
total resistance is 25m. This results in losses ranging
from 2% to 8% as the output current increases from 3A to
15A per output stage for a 5V output, or a 3% to 12% loss
per output stage for a 3.3V output. Efficiency varies as the
inverse square of VOUT for the same external components
20
Share Link: GO URL

All Rights Reserved © qdatasheet.com  [ Privacy Policy ] [ Contact Us ]